Recibe todas las novedades en tu mail

Aquiles y la tortuga





Aquiles y la tortuga es, quizás, la más conocidas de las paradojas de Zenón. El filósofo argumentaba que, en una hipotética carrera entre Aquiles (el guerrero que mató a Héctor) y una tortuga, si esta tenía última una ventaja inicial, el humano siempre perdería. Zenón “demostraba” que, a pesar de que el guerrero corre mucho más rápido que la tortuga, nunca podría alcanzarla. Imaginemos que la distancia a cubrir en la carrera son cien metros, y que la tortuga tiene cincuenta metros de ventaja. Al darse la orden de salida, Aquiles recorre en poco tiempo la distancia (cincuenta metros) que los separaba inicialmente. Pero, al llegar allí, descubre que la tortuga ya no está, sino que ha avanzado, mucho más lentamente, diez o veinte centímetros. Lejos de desanimarse, el guerrero sigue corriendo. Pero, al llegar de nuevo donde estaba la tortuga, ésta ha avanzado un poco más. Zenón sostiene que esta situación se repite indefinidamente, y que Aquiles jamás logrará alcanzar a la tortuga, que finalmente ganará la carrera.

Es bastante obvio que esto no es así, y es muy fácil comprobar en la práctica que dicho razonamiento es erróneo. Sin embargo, no es tan fácil encontrar donde está el fallo, y hubo que esperar hasta mediados del siglo XVII para que el matemático escocés James Gregory demostrara matemáticamente que una suma de infinitos términos puede tener un resultado finito. Los tiempos en los que Aquiles recorre la distancia que lo separa del punto anterior en el que se encontraba la tortuga son infinitos, pero cada vez más y más pequeños. La suma de todos estos tiempos, a pesar de su infinito número, da como resultado un lapso de tiempo finito, que es el momento en que Aquiles alcanzará a la tortuga.

Otra forma de encarar el problema es evitando el análisis infinitesimal utilizando el análisis discreto. Podemos pensar que Aquiles no recorre espacios infinitesimales, sino discretos, que podemos llamar “zancadas”. A cada zancada le corresponde una distancia concreta de, por ejemplo, un metro. De esa manera, el problema se reduce a calcular en qué momento la última zancada de Aquiles recorrerá una distancia mayor a la que haya podido recorrer la tortuga en el mismo tiempo. De esta forma se puede demostrar que, como hoy sabemos, el movimiento existe.

---


No hay comentarios.: