El experimento del gato de Schrödinger es un experimento imaginario concebido en 1935 por el físico austríaco Erwin Schrödinger para exponer una de las consecuencias menos intuitivas de la mecánica cuántica.
Plantea un sistema que se encuentra formado por una caja cerrada y opaca que contiene un gato en su interior, una botella de gas venenoso y un dispositivo, el cual contiene una partícula radiactiva con una probabilidad del 50% de desintegrarse en un tiempo dado, de manera que si la partícula se desintegra, el veneno se libera y el gato muere.
Al terminar el tiempo establecido, hay una probabilidad del 50% de que el dispositivo se haya activado y el gato esté muerto, y la misma probabilidad de que el dispositivo no se haya activado y el gato esté vivo. Según los principios de la mecánica cuántica, la descripción correcta del sistema en ese momento (su función de onda) será el resultado de la superposición de los estados «vivo» y «muerto» (a su vez descritos por su función de onda). Sin embargo, una vez que se abra la caja para comprobar el estado del gato, éste estará vivo o muerto.
Ahí radica la paradoja. Mientras que en la descripción clásica del sistema el gato estará vivo o muerto antes de que abramos la caja y comprobemos su estado, en la mecánica cuántica el sistema se encuentra en una superposición de los estados posibles hasta que interviene el observador. El paso de una superposición de estados a un estado definido se produce como consecuencia del proceso de medida, y no puede predecirse el estado final del sistema: solo la probabilidad de obtener cada resultado. La naturaleza del proceso sigue siendo una incógnita, que ha dado lugar a distintas interpretaciones de carácter especulativo.
Siguiendo la interpretación de Copenhague, en el momento en que abramos la caja, la sola acción de observar modifica el estado del sistema tal que ahora observamos un gato vivo o un gato muerto. Este colapso de la función de onda es irreversible e inevitable en un proceso de medida, y depende de la propiedad observada. Es una aproximación pragmática al problema, que considera el colapso como una realidad física sin justificarlo completamente. El Postulado IV de la mecánica cuántica expresa matemáticamente como evoluciona el estado cuántico tras un proceso irreversible de medida.
En la interpretación de los «muchos mundos» («many-worlds»), formulada por Hugh Everett en 1957, el proceso de medida supone una ramificación en la evolución temporal de la función de onda. El gato está vivo y muerto a la vez pero en ramas diferentes del universo: ambas son reales, pero incapaces de interactuar entre sí debido a la decoherencia cuántica.
En la interpretación del colapso objetivo, la superposición de estados se destruye aunque no se produzca observación, difiriendo las teorías en que magnitud física es la que provoca la destrucción (tiempo, gravitación, temperatura, términos no lineales en el observable correspondiente). Esa destrucción es lo que evita las ramas que aparecen en la teoría de los multi universos. La palabra "objetivo" procede de que en esta interpretación tanto la función de onda como el colapso de la misma son "reales", en el sentido ontológico. En la interpretación de los muchos-mundos, el colapso no es objetivo, y en la de Copenhague es una hipótesis ad hoc.
La interpretación relacional rechaza la interpretación objetiva del sistema, y propone en cambio que los estados del sistema son estados de relación entre el observador y el sistema. Distintos observadores, por tanto, describirán el mismo sistema mediante distintas funciones de onda. Antes de abrir la caja, el gato tiene información sobre el estado del dispositivo, pero el experimentador no tiene esa información sobre lo que ha ocurrido en la caja. Así, para el gato, la función de onda del aparato ya ha colapsado, mientras que para el experimentador el contenido de la caja está aún en un estado de superposición. Solamente cuando la caja se abre, y ambos observadores tienen la misma información sobre lo que ha pasado, las dos descripciones del sistema colapsan en el mismo resultado.
La interpretación asambleística o estadística interpreta la función de onda como una combinación estadística de múltiples sistemas idénticos. La superposición es una abstracción matemática que describe este conjunto de sistemas idénticos; pero cuando observamos un sistema individual, el resultado es uno de los estados posibles. Sin embargo, esta interpretación es incapaz de explicar fenómenos experimentales asociados a partículas individuales, como la interferencia de un solo fotón en la versión cuántica del experimento de Young.
Si bien esta paradoja resulta difícil de comprender para muchos y su interpretación es variada e inconstante, podemos ver algunas referencias al mismo en varias series, cómics y videojuegos actuales.
Fuente: Wikipedia.
No hay comentarios.:
Publicar un comentario